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Introduction

Tracing:
Study runtime behavior
Can be used to measure latency = fundamental for RT debug

Tracer requirements:
Low-overhead
Consistant maximum latency

Contribution:
Methodology and tool to measure real-time latencies (NPT)
Application of NPT to measure LTTng-UST latency
Improvements to the real-time behavior of LTTng
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Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

RTOS: Xenomai vs. Linux

Couche matérielle (Hardware)

Micro-noyau (Thin-kernel)

Tâches temps réel

Noyau Linux
(Non-temps réel)

Espace utilisateur (User-space)
(Tâches non-temps réel)

Xenomai:
ADEOS thin-kernel
Interrupt management – non-RT cannot preempt RT
Hard Real Time ?

RT and non-RT tasks are independent
Full Linux platform ?
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Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

RTOS: Xenomai vs. Linux

Why using the Linux kernel ?

Able to do Soft Real Time, can reach Hard Real Time :
BIOS configuration: would you use hyperthreading ?
Kernel configuration: PREEMPT_RT patch, which is more
and more integrated to the standard kernel
Software configuration: interrupts redirection, cpu shielding. . .

The power of the community
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Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

The Linux Tracing Toolkit next-generation, LTTng

Why LTTng is pertinent for RT applications ?
Both userspace and kernel tracers (same clock source)
Statically compiled tracepoints
External process to consume events
Arbitrary event types (Common Trace Format)
Per-CPU ring buffers
Important tracing variables protected by RCU

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 5 / 24



Research Context
Test environment
Baseline results

Improving LTTng added latency

Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

How LTTng-UST consumer works (simplified version)

LTTng consumer

Ring buffers

LTTng 
instrumented 
application

Write events
Read events in 
released filled 

buffers

sys_write to inform that 
current buffer is full
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Test environment

Hardware:
CPU Intel R© CoreTM i7 CPU 920 2.67 GHz
RAM 3× 2 GiB DDR3 at 1 067 MHz

Motherboard Intel DX58SO

Kernels:
Standard debian Linux kernel 3.2.0-3-amd64

package version 3.2.21-3
RT debian Linux kernel 3.2.0-3-rt-amd64

package version 3.2.23-1
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Presentation of the test environment
System verification

System verification
hwlatdetect (hwlat_detector): no hardware latency detected
during one hour.

hwlatdetect: test duration 3600 seconds
parameters:

Latency threshold: 10us
Sample window: 1000000us
Sample width: 500000us

Non-sampling period: 500000us
Output File: None

Starting test
test finished
Max Latency: 0us
Samples recorded: 0
Samples exceeding threshold: 0

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 8 / 24



Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Why NPT ?

What we have with known tools:
cyclictest: runs periodic tasks and calculates discrepancy
between desired and real period
preempt-test: verify if higher priority tasks can preempt
lower ones

What we want:
A high-priority process that should not stop
No latency during the run of this process (no preemption)
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The Non-Preempt Test tool
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How NPT works ?

Sets CPU affinity
Sets RT priority
Locks process memory into RAM to disable swapping
Disables local IRQs

Non-stop loops to calculate statistics with rdtsc

Re-enables local IRQs
Prints computed statistics
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The Non-Preempt Test tool
Latency results

Algorithm of NPT’s main loop

1: i ← 0
2: t0 ← read rdtsc
3: t1 ← t0
4:

tracepoint nptstart

5: while i ≤ cycles_to_do do
6: i ← i + 1
7: duration← (t0 − t1)× cpuPeriod
8:

tracepoint nptloop

9: CalculateStatistics(duration)
10: t1 ← t0
11: t0 ← read rdtsc
12: end while

13: tracepoint nptstop
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The Non-Preempt Test tool
Latency results

The test procedure

Shield CPUs (cpusets)

Run NPT for 108 loops:
Without tracing
With LTTng kernel tracing alone
With LTTng-UST tracing alone
With LTTng-UST and kernel tracing

Do it on:
Standard kernel
PREEMPT_RT patched kernel
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Latency results without tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels
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Latency results with LTTng kernel tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels
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The Non-Preempt Test tool
Latency results

Latency results with LTTng-UST tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels
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The Non-Preempt Test tool
Latency results

Latency results with LTTng-UST and kernel tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels
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Identify the source of the latency

Problem
Latency added by the LTTng-UST tracing synchronization

Proposed solution
Removing synchronization between instrumented application and
LTTng consumer:

The consumer will now poll to verify if a buffer is full
Permanent polling (100% CPU use) and usleep-timed polling
= same performances (CPU shielding)

Removing LTTng-UST getcpu system call
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Latency results on the standard kernel
Histogram generated by NPT for 108 cycles with original and modified LTTng-UST
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Latency results on the RT kernel
Histogram generated by NPT for 108 cycles with original and modified LTTng-UST
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Latency results with modified LTTng-UST
Histograms generated by NPT for 108 cycles on standard and RT kernels
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Numeric comparison
Statistics per cycles, in nanoseconds, generated by NPT on both standard and RT kernels
for both the original and modified versions of LTTng-UST

Latencies in ns
Kernel standard RT
LTTng original modified original modified
Minimum 287 198 289 197
Mean 317 220 322 206
Maximum 121 744 5 847 19 837 5 088
Variance 74.778 1.186 1.813 1.027
Deviation 273 34.44 42.58 32.05
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Conclusion

Non-Preempt Test tool

Effects of LTTng tracing on both standard and RT kernels

Modified LTTng according to our observations

Latency is currently as low as 5 µs on both standard and
PREEMPT_RT patched kernels
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Future Work

Continue LTTng-UST latency hunt
Integrate our changes in the main branch
Study the real-time behavior in non shielded environments
Clarify the process of CPU isolation with respect to per-CPU
kernel tasks such as RCU reclamation, timer update, . . .
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Thank you. Any question ?

LTTng www.lttng.org
mailing list: lttng-dev@lttng.org

NPT: git.dorsal.polymtl.ca/?p=npt.git

Slides: www.dorsal.polymtl.ca/~rbeamonte/
dorsal-pm-dec2012.pdf
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