
Tracing and Sampling for Real-Time partially
simulated Avionics Systems

Raphaël Beamonte Michel Dagenais

Computer and Software Engineering Department
École Polytechnique de Montréal

C.P.6079, Station Downtown, Montréal, Québec, Canada, H3C 3A7

DORSAL Project Meeting
December 5, 2012

Introduction

Tracing:
Study runtime behavior
Can be used to measure latency = fundamental for RT debug

Tracer requirements:
Low-overhead
Consistant maximum latency

Contribution:
Methodology and tool to measure real-time latencies (NPT)
Application of NPT to measure LTTng-UST latency
Improvements to the real-time behavior of LTTng

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 1 / 24

Table of Contents

1 Research Context
Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

2 Test environment
Presentation of the test environment
System verification

3 Baseline results
The Non-Preempt Test tool
Latency results

4 Improving LTTng added latency
Identify the source of the latency
Latency results and comparison

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 2 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

RTOS: Xenomai vs. Linux

Couche matérielle (Hardware)

Micro-noyau (Thin-kernel)

Tâches temps réel

Noyau Linux
(Non-temps réel)

Espace utilisateur (User-space)
(Tâches non-temps réel)

Xenomai:
ADEOS thin-kernel
Interrupt management – non-RT cannot preempt RT
Hard Real Time ?

RT and non-RT tasks are independent
Full Linux platform ?

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 3 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

RTOS: Xenomai vs. Linux

Why using the Linux kernel ?

Able to do Soft Real Time, can reach Hard Real Time :
BIOS configuration: would you use hyperthreading ?
Kernel configuration: PREEMPT_RT patch, which is more
and more integrated to the standard kernel
Software configuration: interrupts redirection, cpu shielding. . .

The power of the community

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 4 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

The Linux Tracing Toolkit next-generation, LTTng

Why LTTng is pertinent for RT applications ?
Both userspace and kernel tracers (same clock source)
Statically compiled tracepoints
External process to consume events
Arbitrary event types (Common Trace Format)
Per-CPU ring buffers
Important tracing variables protected by RCU

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 5 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Real-Time Operating Systems
The Linux Tracing Toolkit next-generation, LTTng

How LTTng-UST consumer works (simplified version)

LTTng consumer

Ring buffers

LTTng
instrumented
application

Write events
Read events in
released filled

buffers

sys_write to inform that
current buffer is full

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 6 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Presentation of the test environment
System verification

Test environment

Hardware:
CPU Intel R© CoreTM i7 CPU 920 2.67 GHz
RAM 3× 2 GiB DDR3 at 1 067 MHz

Motherboard Intel DX58SO

Kernels:
Standard debian Linux kernel 3.2.0-3-amd64

package version 3.2.21-3
RT debian Linux kernel 3.2.0-3-rt-amd64

package version 3.2.23-1

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 7 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Presentation of the test environment
System verification

System verification
hwlatdetect (hwlat_detector): no hardware latency detected
during one hour.

hwlatdetect: test duration 3600 seconds
parameters:

Latency threshold: 10us
Sample window: 1000000us
Sample width: 500000us

Non-sampling period: 500000us
Output File: None

Starting test
test finished
Max Latency: 0us
Samples recorded: 0
Samples exceeding threshold: 0

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 8 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Why NPT ?

What we have with known tools:
cyclictest: runs periodic tasks and calculates discrepancy
between desired and real period
preempt-test: verify if higher priority tasks can preempt
lower ones

What we want:
A high-priority process that should not stop
No latency during the run of this process (no preemption)

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 9 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

How NPT works ?

Sets CPU affinity
Sets RT priority
Locks process memory into RAM to disable swapping
Disables local IRQs

Non-stop loops to calculate statistics with rdtsc

Re-enables local IRQs
Prints computed statistics

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 10 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Algorithm of NPT’s main loop

1: i ← 0
2: t0 ← read rdtsc
3: t1 ← t0
4:

tracepoint nptstart

5: while i ≤ cycles_to_do do
6: i ← i + 1
7: duration← (t0 − t1)× cpuPeriod
8:

tracepoint nptloop

9: CalculateStatistics(duration)
10: t1 ← t0
11: t0 ← read rdtsc
12: end while

13: tracepoint nptstop

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 11 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Algorithm of NPT’s main loop

1: i ← 0
2: t0 ← read rdtsc
3: t1 ← t0
4: tracepoint nptstart
5: while i ≤ cycles_to_do do
6: i ← i + 1
7: duration← (t0 − t1)× cpuPeriod
8: tracepoint nptloop
9: CalculateStatistics(duration)

10: t1 ← t0
11: t0 ← read rdtsc
12: end while
13: tracepoint nptstop

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 11 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

The test procedure

Shield CPUs (cpusets)

Run NPT for 108 loops:
Without tracing
With LTTng kernel tracing alone
With LTTng-UST tracing alone
With LTTng-UST and kernel tracing

Do it on:
Standard kernel
PREEMPT_RT patched kernel

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 12 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Latency results without tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 13 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Latency results with LTTng kernel tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 14 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Latency results with LTTng-UST tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 15 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

The Non-Preempt Test tool
Latency results

Latency results with LTTng-UST and kernel tracing
Histogram generated by NPT for 108 cycles on standard and RT kernels

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)>
15

0
Standard Linux kernel

Linux kernel with PREEMPT_RT patch

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 16 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Identify the source of the latency
Latency results and comparison

Identify the source of the latency

Problem
Latency added by the LTTng-UST tracing synchronization

Proposed solution
Removing synchronization between instrumented application and
LTTng consumer:

The consumer will now poll to verify if a buffer is full
Permanent polling (100% CPU use) and usleep-timed polling
= same performances (CPU shielding)

Removing LTTng-UST getcpu system call

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 17 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Identify the source of the latency
Latency results and comparison

Latency results on the standard kernel
Histogram generated by NPT for 108 cycles with original and modified LTTng-UST

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)

Original LTTng UST

Modified LTTng UST

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 18 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Identify the source of the latency
Latency results and comparison

Latency results on the RT kernel
Histogram generated by NPT for 108 cycles with original and modified LTTng-UST

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20 22

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)

Original LTTng UST

Modified LTTng UST

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 19 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Identify the source of the latency
Latency results and comparison

Latency results with modified LTTng-UST
Histograms generated by NPT for 108 cycles on standard and RT kernels

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
y
c
le

s

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 20 / 24

Research Context
Test environment
Baseline results

Improving LTTng added latency

Identify the source of the latency
Latency results and comparison

Numeric comparison
Statistics per cycles, in nanoseconds, generated by NPT on both standard and RT kernels
for both the original and modified versions of LTTng-UST

Latencies in ns
Kernel standard RT
LTTng original modified original modified
Minimum 287 198 289 197
Mean 317 220 322 206
Maximum 121 744 5 847 19 837 5 088
Variance 74.778 1.186 1.813 1.027
Deviation 273 34.44 42.58 32.05

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 21 / 24

Conclusion

Non-Preempt Test tool

Effects of LTTng tracing on both standard and RT kernels

Modified LTTng according to our observations

Latency is currently as low as 5 µs on both standard and
PREEMPT_RT patched kernels

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 22 / 24

Future Work

Continue LTTng-UST latency hunt
Integrate our changes in the main branch
Study the real-time behavior in non shielded environments
Clarify the process of CPU isolation with respect to per-CPU
kernel tasks such as RCU reclamation, timer update, . . .

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 23 / 24

Thank you. Any question ?

LTTng www.lttng.org
mailing list: lttng-dev@lttng.org

NPT: git.dorsal.polymtl.ca/?p=npt.git

Slides: www.dorsal.polymtl.ca/~rbeamonte/
dorsal-pm-dec2012.pdf

Raphaël Beamonte – 2012 (CC BY-SA) Tracing and Sampling for RT Systems 24 / 24

www.lttng.org
lttng-dev@lttng.org
git.dorsal.polymtl.ca/?p=npt.git
www.dorsal.polymtl.ca/~rbeamonte/dorsal-pm-dec2012.pdf
www.dorsal.polymtl.ca/~rbeamonte/dorsal-pm-dec2012.pdf

	Research Context
	Test environment
	Baseline results
	Improving LTTng added latency

