
Runtime verification of real-time
applications using trace data and

model requirements
Progress Report Meeting

December 10, 2015

Raphaël BEAMONTE Michel DAGENAIS

Distributed Open Reliable Systems Analysis Lab
Computer and Software Engineering Department

École Polytechnique de Montréal

Introduction

• Low-overhead tracing is available

• But trace analysis requires users to have kernel knowledge

• So what about automating the analysis ?
• CAE suggested to verify applications’ execution using

specifications

• Ericsson is working towards programming at model level

• Why couldn’t we do both?

• ⇒ model-based constraints

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 2/24 – www.dorsal.polymtl.ca

Table of Contents

1 Introduction

2 Analyzed case

3 Constraints verification

4 Constraint analysis

5 Conclusion

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 3/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Analyzed case
Occasional missing of deadlines

Problem
In a task that appears a lot of times, some deadlines are
missed occasionnaly.

Analysis

What happened on the kernel side when the deadlines were
missed ?

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 4/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Analyzed case
Occasional missing of deadlines

[17:33:05.252828753] (+0.000000748) computer
sched_switch: { cpu_id = 2 }, { vtid = 13214, vpid =
13210 }, { prev_comm = "tk-preempt", prev_tid =
13214, prev_prio = -2, prev_state = 0, next_comm = "
tk-preempt", next_tid = 13215, next_prio = -21 }

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 5/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Analyzed case
State machine representation

. . . work wait . . .

deadline/d = 0
cputime/c = 0
preempt/p = 0

tracekit:begin

tracekit:end
deadline/d ≤ 45 ms
cputime/c == 100%

preempt/p == 0

State machine representation of tk-preempt’s work using constraints to check if our
process spent at most 45 ms working, used 100 % of the CPU time and was not
preempted during its critical real-time task

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 6/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Analyzed case
State Chart XML representation
<?xml version ="1.0" encoding="UTF−8"?>
<scxml xmlns=" http : / /www.w3. org /2005/07 / scxml" version=" 1.0 ">

< i n i t i a l >
< t rans i t ion event=" t racek i t : begin" target="work" / >

< / i n i t i a l >

<state id="work">
<onentry>

<assign location=" deadline / d" expr="0" / >
<assign location="preempt / p" expr="0" / >
<assign location="cputime / c" expr="0" / >

< / onentry>

< t rans i t ion event=" t racek i t : end" target=" wait "
cond=" deadline / d & l t ;= 45ms; preempt / p == 0;

cputime / c == 100%" / >
< / state>

<state id=" wait ">
< / state>

< / scxml>
Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 7/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Internal state system

• Used to store the state of different metrics per PID through
time

• Three categories of variables:
• Independent from the current state (state system free)

• Counters

• Timers

• Variables are categorized according to the number of
queries needed to get their value at a given time: 0, 1 or 2

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 8/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Internal state system
Counters

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 9/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Internal state system
Timers

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 10/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraint verification
How it is done

• Done when following a transition

• Consider Tinit is the timestamp of the variable initialization
and Ttrans the timestamp of the event setting off the
transition

• Consider V (Tx) the value of the variable in the state
system at timestamp Tx

• The variable value for constraint verification will be
V (Ttrans)− V (Tinit)

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 11/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraint verification
Constraints status: VALID vs. INVALID vs. UNCERTAIN

Received tracekit:begin at 18:27:53.173 147 428
Entering state: Work
Variables:

- deadline/d = 0
- cputime/c = 0
- preempt/p = 0

Received tracekit:end at 18:27:53.218 552 778
Entering state: Wait
Constraints:

- deadline/d <= 45ms [INVALID] value: 45.4054ms
- cputime/c == 100% [INVALID] value: 99.9806%
- preempt/p == 0 [INVALID] value: 1

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 12/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraints verification
Scalability

0

10

20

30

40

50

60

0.0e0 5.0e6 1.0e7 1.5e7 2.0e7 2.5e7

Ti
m

e
(s

)

Number of kernel events

State system build

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 13/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraints verification
Scalability

0

50

100

150

200

250

300

0.0e0 1.0e6 2.0e6 3.0e6 4.0e6

In
st

an
ce

bu
ild

an
d

co
ns

tra
in

tv
er

ifi
ca

tio
n

tim
e

(s
)

Number of userspace events

Without any
Deadline

Preemption
CPU usage

All three

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 14/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraints verification
Scalability

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

In
st

an
ce

s
bu

ild
an

d
co

ns
tra

in
ts

ve
rifi

ca
tio

n
tim

e
(s

)

n

n × deadline
n × preemption
n × CPU usage

n × All three

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 15/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraints analysis
• Now we know where are the problems. But we’d like to

know why there was a problem!

• Step 1: Data extraction
• Depends on the category of variable

• Aims to extract relevant data for next step

• Step 2: Data organization
• Depends on the category of variable

• Aims to identify the normal and abnormal behaviors and
regroup them

• Step 3: Algorithm application
• Different approaches for absolute (e.g. == 0) and relative

(e.g. < 2) constraints

• Same algorithm used no matter the category of variable
Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 16/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Algorithms
Absolute

• Each element is part of the problem: each occurrence
adds to the responsibility of that element

1 different constraint(s) with invalid status on 31021 different instances
Constraint preempt/p == 0 (wait) has been invalid 2036 times

Process should not have been preempted.
Processes identified as potential cause of constraint violation:

--
| Task | TID | Occurrences | Responsibility | Max. Prio. |
|==|
| tk-preempt | 13215 | 1905 | 93.5658% | -21 |
| watchdog/2 | 32 | 144 | 7.0727% | -100 |
--
Total preemption occurrences identified: 2049

In 100.0% of cases, the process which preempted had a higher priority.

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 17/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Algorithms
Relative

• Amongst the elements, some are part of the problem,
some not.

• We need to identify what should have been instead.

1 different constraint(s) with invalid status on 31021 different instances
Constraint preempt/p < 2 (wait) has been invalid 13 times

Invalid preempting tasks list [tk-preempt 13215, watchdog/2 32] has been encountered
13 times

Preempting tasks lists identified as potential expected list instead of this invalid
one:

| Preempting tasks list | Distance | Occurrences | Weight |
|===|
[tk-preempt 13215]	1	1892	90.0956%
[]	2	28984	86.8090%
[watchdog/2 32]	1	131	46.5711%

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 18/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Algorithms
Relative

1 different constraint(s) with invalid status on 31021 different instances
Constraint cputime/c > 99% (wait) has been invalid 1905 times

Invalid interruption list {PREEMPTED, tk-preempt 13215=1} has been encountered 1884
times

Interruption lists identified as potential expected list instead of this invalid one:

| Valid interruption list | Distance | Occurrences | Weight |
|===|
| [] | 1 | 28984 | 95.0000% |

Invalid interruption list {PREEMPTED, tk-preempt 13215=1, PREEMPTED, watchdog/2 32=1}
has been encountered 21 times

Interruption lists identified as potential expected list instead of this invalid one:

| Valid interruption list | Distance | Occurrences | Weight |
|===|
| [[PREEMPTED, watchdog/2 32, [860.0, 13400.0]]]| 1 | 131 | 95.0000% |
| [] | 2 | 28984 | 94.5501% |

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 19/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Algorithms
Relative

• Distance = edit distance (only add or delete, not replace)
between valid and invalid lists of elements

[a,b, c]to [a,b] (d = 1) remove c
to [a] (d = 2) remove b
to [] (d = 3) remove a
to [e] (d = 4) insert e

• Occurrences = number of times we encountered that valid
list of elements

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 20/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Algorithms
Relative
Weight = weight as computed by:

Wi = Wr i − P

With the uncertainty penalty P = FC ×
(

1− 1
Nvalid

)
(FC = 0.1)

And the relative weight Wr i :

Wr i =
Oi∑

dj≤di
Oj
× di

max(1, s)
+

s − di

max(1, s)

With:
• Oi the number of occurrences of the valid list i
• di the distance between this list and the invalid one
•
∑

dj≤di
Oj the sum of Oj for all list j with dj <= di

• s the size (or number of elements) of the invalid list
Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 21/24 – www.dorsal.polymtl.ca

POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Constraints analysis
Scalability

0
10
20
30
40
50
60
70
80
90

0.0e0 5.0e6 1.0e7 1.5e7 2.0e7 2.5e7

Ti
m

e
(s

)

Number of events (kernel and user-space)

Model build and constraint verification
Data organization

Analysis for constraint == 0
Analysis for constraint < 2

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 22/24 – www.dorsal.polymtl.ca

Conclusion

• New approach using constraints to automatically detect
problems using traces

• Overview of how we verify constraints

• Algorithms to do a more thorough analysis of the
constraints violations

• Linear scaling of the approaches used

• Future work:
• Finish the implementation of the analysis algorithm

(counters and timers done, state system free variables to
go)

• Track 3 of the Ph.D.⇒ from trace to model-based
constraints

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 23/24 – www.dorsal.polymtl.ca

Thank you.
Any question?

raphael.beamonte@polymtl.ca

Slides:
www.dorsal.polymtl.ca/~rbeamonte/dorsal-pm-dec2015.pdf

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 24/24 – www.dorsal.polymtl.ca

mailto:raphael.beamonte@polymtl.ca
www.dorsal.polymtl.ca/~rbeamonte/dorsal-pm-dec2015.pdf

	Introduction
	Analyzed case
	Constraints verification
	Constraint analysis
	Conclusion

