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Introduction

• Low-overhead tracing is available

• But trace analysis requires users to have kernel knowledge

• So what about automating the analysis ?
• CAE suggested to verify applications’ execution using

specifications

• Ericsson is working towards programming at model level

• Why couldn’t we do both?

• ⇒ model-based constraints

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 2/24 – www.dorsal.polymtl.ca



Table of Contents

1 Introduction

2 Analyzed case

3 Constraints verification

4 Constraint analysis

5 Conclusion

Runtime verif. of RT apps using traces and models – Raphaël BEAMONTE – 2015 (CC BY-SA) 3/24 – www.dorsal.polymtl.ca



POLYTECHNIQUE
MONTRÉAL

Introduction Analyzed case Constraints verification Constraint analysis Conclusion

Analyzed case
Occasional missing of deadlines

Problem
In a task that appears a lot of times, some deadlines are
missed occasionnaly.

Analysis

What happened on the kernel side when the deadlines were
missed ?
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Analyzed case
Occasional missing of deadlines

[17:33:05.252828753] (+0.000000748) computer
sched_switch: { cpu_id = 2 }, { vtid = 13214, vpid =
13210 }, { prev_comm = "tk-preempt", prev_tid =
13214, prev_prio = -2, prev_state = 0, next_comm = "
tk-preempt", next_tid = 13215, next_prio = -21 }
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Analyzed case
State machine representation

. . . work wait . . .

deadline/d = 0
cputime/c = 0
preempt/p = 0

tracekit:begin

tracekit:end
deadline/d ≤ 45 ms
cputime/c == 100%

preempt/p == 0

State machine representation of tk-preempt’s work using constraints to check if our
process spent at most 45 ms working, used 100 % of the CPU time and was not
preempted during its critical real-time task
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Analyzed case
State Chart XML representation
<?xml version ="1.0" encoding="UTF−8"?>
<scxml xmlns=" http : / /www.w3. org /2005/07 / scxml" version=" 1.0 ">

< i n i t i a l >
< t rans i t ion event=" t racek i t : begin" target="work" / >

< / i n i t i a l >

<state id="work">
<onentry>

<assign location=" deadline / d" expr="0" / >
<assign location="preempt / p" expr="0" / >
<assign location="cputime / c" expr="0" / >

< / onentry>

< t rans i t ion event=" t racek i t : end" target=" wait "
cond=" deadline / d & l t ;= 45ms; preempt / p == 0;

cputime / c == 100%" / >
< / state>

<state id=" wait ">
< / state>

< / scxml>
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Internal state system

• Used to store the state of different metrics per PID through
time

• Three categories of variables:
• Independent from the current state (state system free)

• Counters

• Timers

• Variables are categorized according to the number of
queries needed to get their value at a given time: 0, 1 or 2
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Internal state system
Counters
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Internal state system
Timers
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Constraint verification
How it is done

• Done when following a transition

• Consider Tinit is the timestamp of the variable initialization
and Ttrans the timestamp of the event setting off the
transition

• Consider V (Tx) the value of the variable in the state
system at timestamp Tx

• The variable value for constraint verification will be
V (Ttrans)− V (Tinit)
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Constraint verification
Constraints status: VALID vs. INVALID vs. UNCERTAIN

Received tracekit:begin at 18:27:53.173 147 428
Entering state: Work
Variables:

- deadline/d = 0
- cputime/c = 0
- preempt/p = 0

Received tracekit:end at 18:27:53.218 552 778
Entering state: Wait
Constraints:

- deadline/d <= 45ms [INVALID] value: 45.4054ms
- cputime/c == 100% [INVALID] value: 99.9806%
- preempt/p == 0 [INVALID] value: 1
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Constraints verification
Scalability
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Constraints verification
Scalability
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Constraints verification
Scalability
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Constraints analysis
• Now we know where are the problems. But we’d like to

know why there was a problem!

• Step 1: Data extraction
• Depends on the category of variable

• Aims to extract relevant data for next step

• Step 2: Data organization
• Depends on the category of variable

• Aims to identify the normal and abnormal behaviors and
regroup them

• Step 3: Algorithm application
• Different approaches for absolute (e.g. == 0) and relative

(e.g. < 2) constraints

• Same algorithm used no matter the category of variable
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Algorithms
Absolute

• Each element is part of the problem: each occurrence
adds to the responsibility of that element

1 different constraint(s) with invalid status on 31021 different instances
Constraint preempt/p == 0 (wait) has been invalid 2036 times

Process should not have been preempted.
Processes identified as potential cause of constraint violation:

------------------------------------------------------------------
| Task | TID | Occurrences | Responsibility | Max. Prio. |
|================================================================|
| tk-preempt | 13215 | 1905 | 93.5658% | -21 |
| watchdog/2 | 32 | 144 | 7.0727% | -100 |
------------------------------------------------------------------
Total preemption occurrences identified: 2049

In 100.0% of cases, the process which preempted had a higher priority.
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Algorithms
Relative

• Amongst the elements, some are part of the problem,
some not.

• We need to identify what should have been instead.

1 different constraint(s) with invalid status on 31021 different instances
Constraint preempt/p < 2 (wait) has been invalid 13 times

Invalid preempting tasks list [tk-preempt 13215, watchdog/2 32] has been encountered
13 times

Preempting tasks lists identified as potential expected list instead of this invalid
one:

---------------------------------------------------------------
| Preempting tasks list | Distance | Occurrences | Weight |
|=============================================================|
| [tk-preempt 13215] | 1 | 1892 | 90.0956% |
| [] | 2 | 28984 | 86.8090% |
| [watchdog/2 32] | 1 | 131 | 46.5711% |
---------------------------------------------------------------
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Algorithms
Relative

1 different constraint(s) with invalid status on 31021 different instances
Constraint cputime/c > 99% (wait) has been invalid 1905 times

Invalid interruption list {PREEMPTED, tk-preempt 13215=1} has been encountered 1884
times

Interruption lists identified as potential expected list instead of this invalid one:
---------------------------------------------------------------
| Valid interruption list | Distance | Occurrences | Weight |
|=============================================================|
| [] | 1 | 28984 | 95.0000% |

Invalid interruption list {PREEMPTED, tk-preempt 13215=1, PREEMPTED, watchdog/2 32=1}
has been encountered 21 times

Interruption lists identified as potential expected list instead of this invalid one:
-------------------------------------------------------------------------------------
| Valid interruption list | Distance | Occurrences | Weight |
|===================================================================================|
| [[PREEMPTED, watchdog/2 32, [860.0, 13400.0]]]| 1 | 131 | 95.0000% |
| [] | 2 | 28984 | 94.5501% |
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Algorithms
Relative

• Distance = edit distance (only add or delete, not replace)
between valid and invalid lists of elements

[a,b, c]to [a,b] (d = 1) remove c
to [a] (d = 2) remove b
to [ ] (d = 3) remove a
to [e] (d = 4) insert e

• Occurrences = number of times we encountered that valid
list of elements
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Algorithms
Relative
Weight = weight as computed by:

Wi = Wr i − P

With the uncertainty penalty P = FC ×
(

1− 1
Nvalid

)
(FC = 0.1)

And the relative weight Wr i :

Wr i =
Oi∑

dj≤di
Oj
× di

max(1, s)
+

s − di

max(1, s)

With:
• Oi the number of occurrences of the valid list i
• di the distance between this list and the invalid one
•
∑

dj≤di
Oj the sum of Oj for all list j with dj <= di

• s the size (or number of elements) of the invalid list
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Constraints analysis
Scalability
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Conclusion

• New approach using constraints to automatically detect
problems using traces

• Overview of how we verify constraints

• Algorithms to do a more thorough analysis of the
constraints violations

• Linear scaling of the approaches used

• Future work:
• Finish the implementation of the analysis algorithm

(counters and timers done, state system free variables to
go)

• Track 3 of the Ph.D.⇒ from trace to model-based
constraints
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Thank you.
Any question?

raphael.beamonte@polymtl.ca

Slides:
www.dorsal.polymtl.ca/~rbeamonte/dorsal-pm-dec2015.pdf
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