- Real-time system analysis
~ using tracing and sampling
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Context

« Tracing and real-time applications

 Low-overhead system observation

« Provides detailed information

 Challenges

« Extracting meaningful data

- Statistics, abstraction

« Facilitate user exploration

- Tools, viewers
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Analysis

« Separating a process into individual tasks

« Benefits
- Extract statistics
- Specialized display
« Challenges

- Reduce user input

- Improve automatic detection




Process blocking and wakeup

« Basic approach

 Wakeup event = start of a new task
« Limitations

* Spurious wakeups

« Blocking can have many causes

- Resource sharing, synchronisation

- Interleaved with the execution of a task




Real-time priority

« Special scheduling algorithm

* Usually reserved for real-time tasks
« Requires special privileges

« Schedules tasks according to their absolute priority (0-100)
« Priority inheritance

« Limits priority inversion scenarios
« |Implemented via POSIX mutexes

« Choice between inheritance and ceiling




Blocking and preemption

» Blocking

* Process stops executing and cannot resume until explicitly woken up
by an external event

« Happens only in system calls

* Preemption
* Process stops executing because the kernel decides that another
process should be executing instead

- Fair share of CPU time
- Higher priority process

« Can happen in both kernel and user land




Blocking and preemption

 The highest priority runnable process is always
executing

« Two events can change that

« A higher priority process becomes runnable. The current process
gets preempted.

 The current process blocks. The next highest-priority runnable
process starts executing.

- With priority inheritance, this new process' priority is also boosted




Analysis

« With only the different processes' priority, we
can tell whether:

A process has been preempted, if

- The new executing process has high priority
« A process has been blocked, if

- The new executing process has lower or equal priority
- No other process is executing

« With the sched pi_setprio event, it is also possible to see when a
process' priority is boosted
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Producer-consumer example

* Implemented using semaphores

« Does not use priority inheritance
« Consumer is higher priorty

* Producer is lower priority

« Expectations:

« Buffer is always empty

« The consumer is always preempting the producer
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Producer-consumer example

* Four step process

* Production (1)
« Consumption (2)

« 2 extra steps? (3-4)

Producer (LP)
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Producer-consumer example

« Step 1
* Producer is filling buffer

* Producer wakes up consumer because data is ready

Producer (LP)
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Producer-consumer example

« Step 2
« Consumer grabs the CPU and starts consuming

* Producer is preempted

Producer (LP)
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Producer-consumer example

« Step 3
« Consumer has consumed everything and tries to wait

* Producer is still holding an internal kernel lock from its futex call
preventing the consumer from completing its call

« Consumer boosts producer's priority to help it complete its call

Producer (LP)

Futex futex

. |
Futex Futex

Consumer (HP)
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Producer-consumer example

 Step 4
* Producer releases its lock and wakes up consumer

« Consumer is executed and can finally block

* Producer completes its futex call and starts the cycle again

Producer (LP)
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Consumer (HP)
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* Producer is never blocked, only preempted

« Consumer is blocked twice per period

 Priority boosting can happen without explicit user
consent
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Lessons

« Blocking should be categorized

“Planned” blocking

- Input/output operation
- Timer expiration
“Unplanned” blocking

- Mutex contention

« Use the “planned” blockings to help split a
process in repeating periods
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Previous approach

Improved approach
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New approach example (explained)

Improved approach

* Basic case
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Conclusion

* Process separated to form individual tasks

« Using kernel events with no additional instrumentation

« Allows for better analysis tools for real-time processes

- Statistics gathering

- Specific views
 Future work

« Support for user-defined filters
« Robust integration with TMF
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