- Real-time system analysis
~ using tracing and sampling

, R —
—e—L 'M et —_'_'—‘—'—-—-—-—._ Li
" o gy . m
il — ‘l._‘_

;-

_ jmaH“ ‘: 1'1 am | ; | r “m I‘Mﬁ%
. -

-f'-h_I! : _' -

=T

POLYTECHNIQUE ¢

Laboratoire DORSAL MONTREAL :
Département de génie informatique

L'UNIVERSITE DE MONTREAL

Context

Previous work
Limitations and improvements

Example

Context

« Tracing and real-time applications

 Low-overhead system observation

« Provides detailed information

 Challenges

« Extracting meaningful data

- Statistics, abstraction

« Facilitate user exploration

- Tools, viewers

S+ control Flow i | = Resources E Statistics FOE M BB 4L ® S = O O stack Bars = = 0
rrateen TID 11:58:23.259500 11:58:23.259600
cyclictest 1602 1605 (Starttime ° |
cyclictest 1603 | |] -} [Inverse logic
cyclictest 1604 |l || —
—
i —
cyclictest 1605 E= ——
cyclictest 1608 | | —
. ——
cyclictest 1609 | —
lictest 1610 | —
cyclictes
- [
cyclictest 1611] -
cyclictest 1612 =
. —
cychctest 1613 I |
i —
cyclictest 1614 | ——
—_— —
———
—
i= firefox2 & p mpd = 0 __
—
. ——
Timestamp Channel Event Type Content ——
- S
A <srch> <srch> <srch> <srch> —
—
11:58:23.259 551 683; channel0_1 hrtimer_cancel hrtimer=-131935482290568 e —
11:58:23.259 551 827, channelo_0 irg_handler_entry irg=19, name="firewire_ohci =
—
11:58:23.259 551 936; channelo_1 hrtimer_expire_entry hrtimer=-131935482290568, now=102649739! w7
11:58:23.259 552 010; channelo_0 irg_handler_exit irg=19, ret=2 ——— -
11:58:23.259 552 300: channel0_0 sched_wakeup comms=irq/19-firewire, tid=286, prio=49, SUCC pE————
11:58:23.259 552 363 channelo_1 sched_wakeup comm=cyclictesk, tid=1605, prio=2, success=1 m—
11:58:23.259 552 745; channel0_1 hrtimer_expire_exit hrtimer=-131935482290568 __
—
—
. . —
Il Histogram % Properties = g I
[— |
—
. 4 | —
Current Event window Span “ U M| —!
ca | ——
11:58:23.259 552 363 000.000 241 786 ——
omtbn 0 M Ew o —
11:58:23.259 449 593 11:58:23.259 690 121 —
——
of —
| —
| —
—— |
o] —
—
—
—
|
I
I

Analysis

« Separating a process into individual tasks

« Benefits
- Extract statistics
- Specialized display
« Challenges

- Reduce user input

- Improve automatic detection

Process blocking and wakeup

« Basic approach

 Wakeup event = start of a new task
« Limitations

* Spurious wakeups

« Blocking can have many causes

- Resource sharing, synchronisation

- Interleaved with the execution of a task

Real-time priority

« Special scheduling algorithm

* Usually reserved for real-time tasks
« Requires special privileges

« Schedules tasks according to their absolute priority (0-100)
« Priority inheritance

« Limits priority inversion scenarios
« |Implemented via POSIX mutexes

« Choice between inheritance and ceiling

Blocking and preemption

» Blocking

* Process stops executing and cannot resume until explicitly woken up
by an external event

« Happens only in system calls

* Preemption
* Process stops executing because the kernel decides that another
process should be executing instead

- Fair share of CPU time
- Higher priority process

« Can happen in both kernel and user land

Blocking and preemption

 The highest priority runnable process is always
executing

« Two events can change that

« A higher priority process becomes runnable. The current process
gets preempted.

 The current process blocks. The next highest-priority runnable
process starts executing.

- With priority inheritance, this new process' priority is also boosted

Analysis

« With only the different processes' priority, we
can tell whether:

A process has been preempted, if

- The new executing process has high priority
« A process has been blocked, if

- The new executing process has lower or equal priority
- No other process is executing

« With the sched pi_setprio event, it is also possible to see when a
process' priority is boosted

10

Producer-consumer example

* Implemented using semaphores

« Does not use priority inheritance
« Consumer is higher priorty

* Producer is lower priority

« Expectations:

« Buffer is always empty

« The consumer is always preempting the producer

11

Producer-consumer example

* Four step process

* Production (1)
« Consumption (2)

« 2 extra steps? (3-4)

Producer (LP)
J e \ / \ J /"’7"\\ J e \

) \ » L3) \)
/ AN 4 N 4 N

Futex Fukex

futex

futex

Consumer (HP)

12

Producer-consumer example

« Step 1
* Producer is filling buffer

* Producer wakes up consumer because data is ready

Producer (LP)
J e \ / \ J /"’7"\\ J e \

) \ » L3) \)
/ AN 4 N4 A

Futex Fukex

futex

futex

Consumer (HP)

13

Producer-consumer example

« Step 2
« Consumer grabs the CPU and starts consuming

* Producer is preempted

Producer (LP)
e \ A AT AT

) \) 3 ‘x)
" A4 N4 A4

futex Fukex

futex

Consumer (HP)

14

Producer-consumer example

« Step 3
« Consumer has consumed everything and tries to wait

* Producer is still holding an internal kernel lock from its futex call
preventing the consumer from completing its call

« Consumer boosts producer's priority to help it complete its call

Producer (LP)

Futex futex

. |
Futex Futex

Consumer (HP)

15

Producer-consumer example

 Step 4
* Producer releases its lock and wakes up consumer

« Consumer is executed and can finally block

* Producer completes its futex call and starts the cycle again

Producer (LP)

AT N N AT

1) (2) (3) 4

Futex futex

. |
Futex Futex

Consumer (HP)

16

* Producer is never blocked, only preempted

« Consumer is blocked twice per period

 Priority boosting can happen without explicit user
consent

17

Lessons

« Blocking should be categorized

“Planned” blocking

- Input/output operation
- Timer expiration
“Unplanned” blocking

- Mutex contention

« Use the “planned” blockings to help split a
process in repeating periods

18

Previous approach

Improved approach

L
o
£
S
X
)
-
O
©
o
=
o
o
©
S
0
Z

19

New approach example (explained)

Improved approach

* Basic case
] ,"/m \
_—\d/ - One mutex contention
T —
= « Other cases::
= - Preempted by a higher priority
— process:
e — . :
——— /a\ « While mutex is contested (a)
— —— mm J
a — « Before the start of execution (b)
S . .
= « While mutex is not contested (c)
= /\ - The higher priority process blocks on
— D another mutex (d)
e —
- —
S
R
—
e —
S
I .

20

Conclusion

* Process separated to form individual tasks

« Using kernel events with no additional instrumentation

« Allows for better analysis tools for real-time processes

- Statistics gathering

- Specific views
 Future work

« Support for user-defined filters
« Robust integration with TMF

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

